How are Highways financed?

-By: Raul Chavarria, Juan Marin, and Matthew Welch

Background

○ Highways

- Interstate- America's most valuable set of highways

○ Only 2.52% of total lane-mile roads
○ Urban + Rural Interstates
ก 24.4% of all vehicle miles of travel
\bigcirc Both interstates are not adequate for the $21^{\text {st }}$ Century
○ Built mostly between 1960-1970's, life span of 50 years
○ Expiration dates between 2010-2030!

Goals

○ Estimate whether reconstruction and selective widening of interstates could be financed via per mile toll revenue
○ Is so, what how much would the highways cost?
○ How much would the tolls cost us?

Previous Research

○ National Cooperative Highway Research Program conducted a study of future options for the interstate system
○ Study not only foresaw a slowdown in the growth rate of Vehicle per Miles Travelled (VMT) but also predicted a possible topping out of VMT per capita
○ 2% annual growth rate in the first 20 years

- 1.5% annual growth rate for the next 10 after that

Predictions

○ Revamped interstate would widen by 88,600 lane-miles on the existing 46,800 lane-miles

○ In 2003 Dollars, revamp would cost $\$ 3.14$ Trillion dollars over 30 years
○ $\$ 1.4$ trillion for widening
ค $\$ 1.74$ trillion for new routes

* Reconstruction of worn out pavement and bridges not part of estimate

○ In 2011 the former vice chairman of the National Surface Transportation Policy \& Revenue Study Commission co-authored a paper calling for a national inflation-adjusted toll on all Interstate system users to pay for restoration, expansion, and modernization of the system.
○ Electronically collected toll revenue, moved to Modernization account, project would be cash basis
○ New estimate of 1.3-2.5 Trillion for modernization

- 2012- Graells predicts that a 10,000 mile route of rural, inter-city interstates with heavy truck traffic could be paid with just toll money
- Formula $=$ avg. toll (car +truck) rate of 0.15 per mile $=\$ 22$ Billion per year

Reconstruction

○ Rural Interstate- rural cost estimates are given separately for flat, rolling, and mountainous terrain

- Rural Interstate route-miles where divided amongst the terrain to help create a weighted average reconstruction cost per lane-mile.
○ Unit cost was multiplied by the number of lane-miles to provide the estimated total rural Interstate reconstruction cost, in 2010 dollars
○ Rhode Island: \$ 101 Million
○ California: 7.84 Billion
○ All-Electronic-Tolling- $\$ 250,000$ / mile
) Total Reconstruction: \$148 Billion
○ 5.4% more than reconstruction alone

Reconstruction

ค Urban Interstate-Reconstruction unit cost depends on Urban size: Small Urban, Small Urbanized, Large Urbanized, Major Urbanized
○ Separation helped produce the weighted average urban reconstruction unit cost for each state.
○ Then multiplied by the urban Interstate lane-mile total
○ Reconstruction cost ranged from a low of $\$ 315$ million in Vermont to a high of $\$ 59.2$ billion in California.
\bigcirc All-Electronic-Tolling- $\$ 2.5$ million per mile
○ urban Interstates more tolling gantries are needed than for rural Interstates, because the former have far more on-ramps and off-ramps.

○ Total Reconstruction for Urban Interstate : $\$ 441$ Billion

- 10.4% higher than just reconstruction

Initial Construction Cost

○ Rural Interstate- The estimated cost of reconstructing this system is $\$ 148$ billion (2010 dollars), or $\$ 1.20$ million per lane-mile

- Cost is modest due to small amount of rural interstate in mountainous terrain and lack of need to obtain "New Right of Way for Construction" permissions
n Urban Interstate- The estimated cost of reconstructing this system is $\$ 441$ Billion (2010 dollars), or $\$ 4.78$ million per lane-mile
- Cost also are modest compared to high cost of new expressway lanes in urban areas
○ Small/Medium Urban Cost: $\$ 2$ million per lane-mile
- Large/XL Urban Cost: 4-7 million per lane-mile

○ Baseline cost only for reconstruction of existing lane-mile, does not include new lanes or right of ways

Cost

○ The cost of reconstructing the entire existing Interstate Highway without adding new lanes/routes is $\$ 580$ billion (2010 Dollars).

Half of this cost is going to only 8 states
\cap California
\bigcirc Texas
○ New York
○ Illinois
\bigcirc Georgia
○ Pennsylvania
\cap Michigan
○ Florida

Estimated Traffic Revenue

○ Rural Interstate- In 2010, a study was done to see how much traffic would decrease once tolls were placed.

- 10% of small cars stopped using the interstate

○ $3.5 \mathrm{cent} /$ mile toll charged
ค 20% of trucks stopped using the interstate
○ 14 cent/mile toll charged
○ "The baseline toll rates initially selected for this study $3.5 \Phi /$ mile for light vehicles and $14.0 \$ /$ mile for trucks, (both in 2010 dollars) were chosen as potentially being in the right ballpark to pay for reconstruction. "
○ As of 2010, those prices are below national average
○ toll rates of $4.9 ¢ /$ mile for cars and $19.9 ¢ /$ mile for trucks

Toll Rates

○ Both toll rates are adjusted annually by an assumed consumer priced index (CPI) increase of approx. 2.5 \% per year
○ Light Vehicles: Annual growth rate are driven by population growth
○ Low: .3\% (CT) High: 2.2 (AZ)
○ Trucks: Annual growth rate are driven by the state's economic growth
○ Low: 1.8 (WI) High: 3.4 (AZ)

2010 Urban per-mile toll rates

Table 1

2010 Urban per-mile toll rates, by urban area size.

	Peak rate	\% of VMT	Off-peak rate	\% of VMT
Cars				
Small urban areas	$\$.05$	30%	$\$.035$	70%
Medium urban areas	$\$.06$	40%	$\$.045$	60%
Large urban areas	$\$.075$	50%	$\$.055$	50%
Very large urban areas	$\$.10$	60%	$\$.070$	40%
Trucks				
Small urban areas	$\$.20$	35%	$\$.14$	65%
Medium urban areas	$\$.24$	40%	$\$.16$	60%
Large urban areas	$\$.30$	40%	$\$.18$	60%
Very large urban areas	$\$.40$	35%	$\$.20$	65%

Table shows the toll rates used for this exercise and the fraction of the Vehicle per Miles Travelled (VMT) charged the peak and off-peak rates.

Toll Revenue

○ Gross Revenue: Calculated by multiplying CPI-adjusted for that year x adjusted Vehicle per Miles Travelled (VMT) for that year= Net toll revenue for that year
\bigcirc The net toll revenue for that year was then defined as 85% of the gross toll revenue.
○ 10%-: gross revenue devoted to highway maintenance ○ (Approx. \$14,000/mile-lane)

- 5% : gross revenue was assumed for the cost of toll collection based on all-electronic tolling

Urban Interstates

○ America's urban congestion problem suggests that if urban Interstates are to be tolled (for reconstruction), the toll rates should be higher during peak periods than at other times of day.

○ Since these Tolling booths will be more expensive to install, the hike during peak hours helps pay the booths off quicker

○ Peak hours and Peak price- Longer duration of price hike depending on the size of urban area

Widening Cost

- 96 Major Interstates
- 97 Urban Interstates

○ Rural Lane Addition: (2010 dollars)
) Flat terrain: $\$ 2.251$ million/ lane-mile
\cap Rolling terrain: $\$ 2.462$ million/ lane-mile
) Mountainous terrain: $\$ 7.597$ million / lane-mile
○ Urban Lane Addition: (2010 dollars)
) Small: $\$ 4.448$ million / lane-mile
ค Medium: $\$ 5.725$ million / lane-mile
ค Large: $\$ 11.178$ million / lane-mile
○ X-Large: $\$ 29.717$ million / lane-mile

Urban Interstates

○ How many lanes do we need to add to our interstates to reduce year 2040's Daily Vehicles per Miles Travelled to 18,000 or below?

○ 48 Interstates need 2 lanes
ก 23 Interstates need 4 lanes
ก 10 Interstates need 6 lanes
ก 16 Interstates need $8+$ laned
○ California and Texas need most of the $6-8+$ lanes

- California's $\mathrm{I}-405$ and I-605 would need more than 8 lanes, but the way the infrastructure was built, only 4 more could be added. Too large of a project for such an Urban location

Conclusion

○ Is there a way we can collectively pay for a new and lasting Interstate Highway?

○ Yes, buy building both Interstate and Urban toll booths, although it would take 10 years to build and 30 years to pay off it can be done.

Questions?

